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IDENTIFICATION OF AN UNKNOWN CONDUCTIVITY BY MEANS OF MEASURE4ENTS L
AT THE BOUNDARY

Robert V. Kohn*

and

11 Michael Vogelius*

ABSTRACT. -A present a summary of results concerning the determina-
tion of an unknown conduccivity by means of static measurments at
the boundary. The main emphasis is on identifiability; only
briefly discuss the reconstruction problem. Some references are given
to related work for time dependent problems. <

1. INTRODUCTION. We study the following inverse problem: can one determine

an unknown conductivity y(x) inside a body 0, by means of static measurements

at the boundary? A. P. Calder6n raised this question in (2]; it may

be seen as a natural extension of a problem analyzed by Cannon, Douglas and

Jones in 1963 [3,4]. Despite some progress,many unsolved problems remain.

Our main goal here is to s,-mmarize what is known about identifiability; we

do this in sections 2 and 3, which are based mostly on (18]. A few of the

results presented - notably 2E and 3C - are previously unpublished. In

section 4, we touch on the reconstruction problem, given finitely many measure-

ments; and section 5 reviews the literature on some related problems. Poten-

tial applLcations include nondestructive testing and water resources management

[14,13], but these will not be discussed here.

Throughout, Q will be a bounded domain in ]Rn , with unit normal v along

aQ . The unknown conductivity y(x) may take real scalar or matrix values,

corresponding to an isotropic or anisotropic material, In the isotropic case

(1.1) y E L(l), ess inf y > 0

while in the anisotropic case

(1.2) y"ii 'YJiE Yx&&$ E

for all x E 9 and k ERn , with A > 0 . We consider solutions of

(1.3) L u - V((x)Vu) - 0

in the context of heat conduction u represents temperature and yVu the heat

Research supported in part by Mathematical Sciences Research Institute,
Berkeley, CA (IVK) and ONR contract N00014-77-C-0623 (MV).

i



2 Robert V. Kohn and Michael Vogelius

flux; in the context of direct current electrical conduction u represents

voltage and yVu is the vector of current flow. The natural things to measure

at 3Q are the Dirichlet data ulI and the Neumann data y(x)Vu.vl,, . We

denote by P : (a) H (aa) the operator which associates the formerY
to the latter,

P - yVu'vl with L u - 0 , ulan ;

we shall say that "y1  and y2  give the same boundary measurements" if
i~ Y21P7

PY - PY1 2
Knowledge of P yields the energy quadratic form

YY
(1.4) Q Y(0) - f (y~u'Vu)dx - 1fal O°P Y ds,

by Green's formula, where the rightmost integral represents the dual pairing

of HI/2 and H - /2  Conversely, Q determines P by the polarization

identity; hence "y1 and Y2 give the same boundary measurements" iff

QTI - 2 for each 0 E H1/2 (39) . The following variational charac-

terizations of Q are well-known:
QY

(1.5) Q (0) m win J (yVw,Vw)dx

tow showtha

w-0e on arn

(1.6) -Q (0) - min ,a x- a s)
Y aEL2 (nnfafJnJ

2. IDENTIFIABILITY - THE ISOTROPIC CASE. In one dimension, only the harmonic

mean of y can be detected by boundary measurement: it is an easy exercise

to show that

2A. For 9 - Ca,b) , a nd Y2give the same boundary measurements if f

they have the same harmonic mean.

Fortunately, the situation is entirely different in dimension greater than one.

Cannon, Douglas, and Jones considered cylindrical domains, with y con-

stant along lines parallel to the axis, in 1963. They showed that such y

are identifiable:

2B [3]. Supose fl - G x (a,b) , with G a bounded, C 2 a  domain in 1Rn- l

a > 0 . Then the elements of

r1 - { E (Ca( ) : inf y > 0)

can be distinguished by means of boundary measurements.

Their procedure for reconstructing y is remarkably direct. Taking
(a,b) - (O,w) for simplicity, and writing i' - (x 1 ,... n-1) , let L u - 0t

with
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u - 0 on G x {O,r}

u - g(x')sin x n  on 3G x (O,r)

where g 4 -'IR is any positive function. If

k(x') -y(x') lu =

is measured, then 
n

y " k.exp(-w)

where w(x') solves

k = k on G

w Zn g on aG

Thus y(:') is determined for all x' , using a single choice of g

The restriction that y be independent of x is, of course, crucial to

the preceeding analysis. One is not really finding y "in the interior",

since it is determined by its values along the boundary. When the dependence

of y is unrestricted, one naturally obtains information at the boundary more

easily than in the interior. If everything is smooth, then y is determined

to infinite order at aQ .

2C [18]. Suppose that 39 is smooth, and that yi,y 2 E CW(5) . If yl and

y2 give the same boundary measurements, then

k k(2.1) D 'l " Y- '2 on a S

for all k - (k I ... ,k) > 0 , where D= - ( 3_)kn

The proof of 2C is local in character, but not constructive. For x0 E 31

with vU(X O ) 0 0 , consider the Dirichlet data
1 - 1 n-l

W(x) -N2 n (N(x -x,j))
N j.1

i
with corresponding solutions uN

- i - N - 1.2

If 4 COk) has vanishing moments of order . M-1 , then a version of

"St. Venant's principle" provides that

IV L(X)[ s C N -M , N

for x E bounded away from 3c,

If (2.1) fails, then (relabeling if necessary)

_ - _
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Yl (x) - Y2 (x) > C dist (x,39)

with t , 0 and C > 0 , in a neighborhood of some x0 E 3Q ; it now follows

that QY( N) > 2 2(0 N) provided M > nt/2 and N is sufficiently large, a

contradiction to the fact that y and Y2  give the same boundary measure-

ments. Details may be found in [18]; see also 3C below.

An immediate corollary of 2C is this:

2D : For a smoothly bounded domain 9 C Rn , n , 2 , the elements of

r2 - [restrictions to Q of positive, real

analytic functions defined in a neighborhood

of }

can be distinguished by boundary measurements.

The analogue of 2D with "analytic" replaced by "piecewise analytic" is

open. We are encouraged, however, by the following example.

2
2E. Let Q be the unit disc in X , with polar coordinates (r,e) , and

denote by r3 the set of conductivities

0  r< r0

with 0 < r0 < 1 and y a a positive constant. Then the elements of r3 can

be distinguished b boundary measurements.

To prove 2E , consider Y, E r3 , with ? corresponding to o to ; we

shall show that QY(sin NO) 0 Q(sin NO) for all sufficiently large N , unless

S- Y . If f0 r0  this follows instantly, since either 7 < y or 7 > y

and consequently either Qi(sin NO) < Q y(sin Ne) or Qj(sin NO) > Qy(sin Ne)

provided j 0 070 "

Relabeling if necessary, we assume that r0 < r 0  For N , 0 let uN

solve

Ly uN - 0 sin NO,

and notice that for r < r0

(2.2) uN cNr Nsin NO , CN - 2

r0 (l-Y0)+(Yo+l)

In case yo > 1 , (2.2) implies that

(2.3) Jr<i0 j0IVU12dx < <r<ro(yo)VuN 2dx

for sufficiently large N, whence
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fn *jVujd2 dx fr<i YN0 IU2dx + f r VuN 2 dx + fro<r<i IVUNI'dxfr< 0  ro0<r<r 0

fI- y0 ~~x0 <r<r 0  fr 0<r<ilVid
so

(2.4) f 'j7uN12dx < f YVuN,2dx- Q (sin No)

It follows, using (1.5), that Qj(sin NO) < Qy(sin NO)

Next, suppose that yo < 1 . In this case, a similar argument gives

(2.5) -l 1O1 dx < f 1 Y N2dx

with aN = yVuN , and N sufficiently large. Using the dual variational
principle (1.6), we conclude that Q (sin NO) > Qy(sin NO) .

3. IDENTIFIABILITY - THE ANISOTROPIC CASE. In the anisotropic case, one can

not expect to recover the full matrix yij , as the following two examples

demonstrate.

3A. Let Q C MP , n > 1 ,and let y satisfy (1.2). For any C diffeomor-

phism 4 : Q - 9 with

(3.1) O(x) - x , DO(x) - I for all x E 30,

let

y (O(x))- Idet(D(x))Io.D4(x) ty(x)oD0(x)

Then all elements of

r4 a {Y : satisfies (3.1)}

tive the same boundary measurements.
We owe this remark to L. Tartar. If Lyu - 0 ,then L u 0 with

u~~* 0 O) with1
()

u (x)w=uo4'l(x);

* 4 4
by (3.1), u - u on y .Vu = y.Vu on 30

3 [251. Let Q be the unit disc in R 2  with polar coordinates (r,e)

For jan function a(r) , let

C (a cos2O + a-sin 29 (o-a' )sin e.co 8)"{ (a-a-l)sin 8"cos e asne+Q-i o 2/
asn8 + 0 cog

Then all elements of

r {y . ( L(O,) , ass inf o > 01

. sm .. m --- - . ... . . . .. . . ..



6 Robert V. Kohn and Michael Vogelius

give the same boundary measurements.

Indeed,

r , ( r a ( r ) r + 1 a _2

r.L ~ rar ar ar 7.i(r) 2

note that when a Q 1 this is just r times the Laplacian. For N E Z , the

solution of

ie L YcuNo uN1 =eiN6iiN8

has the form v(r)e ,with v(l) 1 and

rr()) v - 0

This implies that

v(r) . C1 exp (I Ir ds +, c2 exp 1,-lNI fr ds)
11SOL(s)- + 2  1+sa(s)

with c1 + c2 = 1 . Since v(r)e E H1 (0) , C2  must equal zero; hence the

Neumann data associated to uN is

Y C7NlVl a U . INleiN8
1 1/2

regardless of the choice of a . The span of fe iN } is dense in H 1/2( O)

so each a E r5  gives the same boundary measurements.

What can one detect, in the anisotropic case? The natural analogue of 2C

is this: if (n-I) eigenvalues and eigenvectors of y are known, the last

eigenvalue can be distinguished by boundary measurements.

3C. Let y,j be two symmetric, positive definite matrices with entries in

La(Q) , and let {A 1 } 1 and {e i,{ei} be the corresponding eigenvalues

and eipenvectors. For x0 E an , let B be a neighborhood of x0  relative

to 5 , and suppose that

(3.2) Y,y E C7(B) , and an n B is C**

(3.3) ej . ej , xj = x in B, 1 j n-l

(3.4) en (xo).v(xo) # 0

(3.5) Q (0) = Q-(*) for every E' E /2(ag)
Y Y

with supp C B fl .

Then
(3.6) Dn(XO)  = n(XO )

no-n

for any km(kl, ... 9k) n O 0
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We sketch the proof. For a fixed z E aQ near x. , let {N I be a

sequence of functions on aQ such that

(3.7) supp ON {Z}

(3.8) ON 1 k,afnB ": CkNk' for all k > - M

(3.9) l1 o,anB - 1 2
where the norms are standard Sobolev norms based on L ; the existence of

such a sequence may be deduced from (18], for any fixed M > 0. If uN solves

Lyu.- 0 in 0 , u.=N on 3 ,

then (3.7)-(3.9) imply

(3.10) lluNlll,S\u - CN-M

for all neighborhoods U of z (c.f. Lemma 2 of (18]). Condition (3.4) gives

in a sufficiently small neighborhood U of z
(3.11) wU n wj2ds < C fu e n.Vw12dx

for any w E H1 (Q) with w - 0 in Q\U ; using this and (3.7)-(3.9), one

obtains

(3.12) f2 ple.Vu dx > C, (n++E) CZ > 0

for any t >. 0 , c > 0 , with P(x) = dist (x,3a) , provided M > (n+l)t/2

(cf. Lemma 3 of [18]).

In order to prove (3.6) it is sufficient to verify that (- y . (-L)

in a ai - neighborhood of x0 , for any k >, 0 . We prove this by contradic-

tion, using (3.10) and (3.12). If it fails, we may assume (switching y and

y if necessary) that there exists a z near x0  and a neighborhood U C B of

z such that

(3.13) An (X) - KnX) > Cp(x) for x EU

with C > 0 , 1>0 . Then

fl(Y VuN VuN)dx > fU (YVuNVuN)dx >1 fU (YVUNVuN)dx

+ C ,1,Utlen'VN12dx

using (3.3) and (3.13). If M > (n+1)t/2, then (3.10) and (3.12) show that
C Ite-uj'x>L , ,, Vud

for large M. Hence, using (1.5),

Q - I (yVuIVu)dx > I CjVuNVuN)dx >

This coutradicts (3.5), and the proof is complete.
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The preceding argument used (3.4) to justify (3.11). The following

example suggests that (3.4) may be dispensable.

3D (4]. For 9 = (a,b) x (c,d) C 2 
, let r6  denote the family of conduc-

tivities

y(x) (

for a E C1 with inf a > 0 . Then the elements of r6 can be distinguished

bI boundary measurements. More specifically, if yi E r 6 , i 1,2 and

1 = 2y1Vu, v - Y2Vu 2v at x, - b

i
where u is the solution to

i
Ly u' - 0 in Qi

"u = 0 at x= a,b

ui sin _- ) at x2 = c,d

then

Yl= 2

4. RECONSTRUCTION. Setting aside the question of identifiability, how might

one estimate y in practice? A straightforward approach is the following:

let V be a finite-dimensional subspace of H (Q) ; for w. E V ,

1 s j s m , set wl E H 1 /2 09) ,and measure Y !a where u solves

L uj  a 0 in , ujla 0

If G is a finite-parameter family of possible conductivities, and j E G

let uj ( V be the solution to the Galerkin equation

f(iV jV#)dx - 0 for all * E V n fl(n)

aj a 0 on an

Now assume furthermore that V and G are selected so that jw H-1/2( )

whenever w E V and j E G , and choose j to minimize

m 35 au 2
(4.1) J ") I P -Y v 11 -1/2

among all E .
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A variation of this method, and its finite-difference analogue, is studied

by Falk in Ill], for operators of the form

- yu" + c(x)u - f(x) 0 < x < 1

c,f known; y > 0 constant

in one dimension. He takes G -I + , and uses just one measurement (m-1) at

one point on the boundary (x-0), so that the functional = 0 for some y ; and

he estimates how ji-yI depends on the choice of V

The minimization of (4.1) has apparently not been studied in higher

dimensions. There is, however, a large literature on parameter identification,

much of which is relevant: see, for example, [10,19,22). In other problems

where identificability and well-posedness are known, one can often prove the

convergence of such a procedure [1]. And in some cases, even identifiability

can be proved using an approximation algorithm [20].

Calderdn takes a completely different approach to the reconstruction

problem in [2], for the scalar case with d - ily-iI1 . sufficiently small. He

L
shows that the Fourier transform of y (extended by zero off Q) has the form

- f( ) + R(C)

where f(&) can be determined by boundary measurements, and

2JR(&)j < C-S2. exp (?r, -diam(Q)).

Thus boundary measurements suffice to approximate (V) well at low frequecies,

if 6 is small. For any fixed E P. , measuring f(E requires the Neumann

data from just one solution of L u - 0 , corresponding to Dirichlet conditions

exp[v(iE+n).x] , with n E n  n'& 0 , Inj - I&I

5. RELATED WORK. The parabolic analogue of our problem is to determine

y - Y(x,t) , given overdetermined boundary data for solutions of

Du- V.(yVu) - 0t

on a space-time cylinder 9 x (0,T) . This problem h's been studied extensive-

ly in space-dimension one, both as to the identifiability of y and as to its

numerical approximation: see [6] for y - constant, (5,9,15,161 for y - y(t)

and [17,21,26] for y - y(x) . We know of no results in space dimension

greater than one for spatially varying y

An interesting nonlinear analogue is obtained by letting y depend on u,

so that the equation becomes P.(y(x,u)Vu) - 0 . The case y - y(u) has been

studied in [7), and a related parabolic problem is treated in [8].

Many authors have studied the reconstruction of an unknown y(x) , given

knowledge of a single function u everywhere on 9 , satisfying 7.(yu) - 0 .

This problem is of particular interest for studying ground-water flow through

a
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porous rock. Identifiability is analyzed in (24], and the convergence of

numerical schemes are studied in (23,12]. Applications and other numerical

methods have been discussed in a dozen or so articles in Water Resources

Research over the last ten years, of which [13,27] are examples.
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